Home » Blog » Special Function package

Special Function package

Special Function package

  • scipy.special package contains numerous functions of mathematical physics.
  • SciPy special function includes Cubic Root, Exponential, Log sum Exponential, Lambert, Permutation and Combinations, Gamma, Bessel, hypergeometric, Kelvin, beta, parabolic cylinder, Relative Error Exponential, etc..
  • For one line description all of these function, type in Python console:
help(scipy.special)	
Output : 
NAME
    scipy.special

DESCRIPTION
    ========================================
    Special functions (:mod:`scipy.special`)
    ========================================
     
    .. module:: scipy.special
     
    Nearly all of the functions below are universal functions and follow
    broadcasting and automatic array-looping rules. Exceptions are noted.

Cubic Root Function:

Cubic Root function finds the cube root of values.

Syntax:

scipy.special.cbrt(x)

Example:

from scipy.special import cbrt
#Find cubic root of 27 & 64 using cbrt() function
cb = cbrt([27, 64])
#print value of cb
print(cb)

Output:

array([3., 4.])

Exponential Function:

Exponential function computes the 10**x element-wise.

Example:

from scipy.special import exp10
#define exp10 function and pass value in its
exp = exp10([1,10])
print(exp)

Output:

[1.e+01 1.e+10]

Permutations & Combinations:

SciPy also gives functionality to calculate Permutations and Combinations.

Combinations – scipy.special.comb(N,k)

Example:

from scipy.special import comb
#find combinations of 5, 2 values using comb(N, k)
com = comb(5, 2, exact = False, repetition=True)
print(com)

Output:

 15.0

Permutations :

scipy.special.perm(N,k)

Example:

from scipy.special import perm
#find permutation of 5, 2 using perm (N, k) function
per = perm(5, 2, exact = True)
print(per)

Output:

20

Log Sum Exponential Function

Log Sum Exponential computes the log of sum exponential input element.

Syntax :

scipy.special.logsumexp(x) 

Bessel Function

Nth integer order calculation function

Syntax :

scipy.special.jn()

 

Leave a Reply

Your email address will not be published.